首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51274篇
  免费   513篇
  国内免费   281篇
测绘学   1372篇
大气科学   3809篇
地球物理   9167篇
地质学   21428篇
海洋学   3937篇
天文学   9785篇
综合类   209篇
自然地理   2361篇
  2021年   269篇
  2020年   297篇
  2019年   297篇
  2018年   3661篇
  2017年   3425篇
  2016年   2365篇
  2015年   592篇
  2014年   830篇
  2013年   1560篇
  2012年   1967篇
  2011年   3871篇
  2010年   3508篇
  2009年   3858篇
  2008年   3111篇
  2007年   3751篇
  2006年   1204篇
  2005年   1311篇
  2004年   1194篇
  2003年   1201篇
  2002年   1018篇
  2001年   734篇
  2000年   705篇
  1999年   518篇
  1998年   491篇
  1997年   571篇
  1996年   438篇
  1995年   470篇
  1994年   465篇
  1993年   372篇
  1992年   382篇
  1991年   353篇
  1990年   358篇
  1989年   327篇
  1988年   334篇
  1987年   358篇
  1986年   317篇
  1985年   417篇
  1984年   408篇
  1983年   441篇
  1982年   410篇
  1981年   372篇
  1980年   418篇
  1979年   320篇
  1978年   299篇
  1977年   293篇
  1976年   264篇
  1975年   259篇
  1974年   267篇
  1973年   254篇
  1971年   172篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Post-earthquake damage data represent an invaluable source of information for the seismic vulnerability assessment of the exposed building stock, as they are a direct evidence of the actual buildings’ performance under real seismic events. This paper exploits a robust and homogeneous database of damage data collected after the 2009 L’Aquila (Italy) earthquake, to derive damage probability matrices for several building typologies representative of the Italian building stock. To this aim, the first part of the work investigates several issues related to the definition of damage to be associated with each inspected building. Different approaches and damage conversion rules are applied, pointing out advantages and weaknesses of each one. Considering the widespread seismic damage observed on masonry infill panels and partitions of reinforced concrete constructions, the impact of this type of non-structural damage on empirical damage and functional loss distributions is explored. The second part of the study proposes different possible interpretations of the repartition of the observed damage in the different damage levels, showing in some cases a bimodal trend. Two novel hybrid procedures are outlined and compared with the classical binomial approach for predicting the subdivision of damage in the different levels. The application of the proposed methodologies to the different building typologies allows the selection, for each one, of the method providing the best fit to empirical results. The parameters required for the application of the optimal approach are reported in the paper, so that results can be used for forecasting the expected seismic damage in sites with similar seismic hazard and exposed buildings.  相似文献   
12.
13.
The main focus of this paper is on uncertainties associated with the selection of the incoherency coefficient and apparent propagation velocity in the simulation of asynchronous seismic excitations based on the provisions of CEN [Comité Européen de Normalisation] (Eurocode 8: Design of structures for earthquake resistance—part 2: bridges, BS EN 1998-2:2005, Brussels, Belgium 2005). To this effect, the importance of utilizing appropriate values of these two parameters in the simulation of spatially varying seismic excitations is highlighted, and practice-oriented recommendations are provided for their selection. In addition, preliminary probability distributions are proposed for the consideration of the effect of uncertainty in the selection of the apparent propagation velocity for reliability (fragility) analyses. The effect of multi-support input motions on the seismic response of bridges is also discussed.  相似文献   
14.
Unlike conventional seismic resisting systems, rocking core-moment frame (RCMF) combinations as low-damage assemblies are being developed to mitigate, or even eliminate structural damage and residual deformations following a severe earthquake. Despite extensive studies on the performance of specific rocking cores, dynamic characteristics and strength demands of a generic RCMF have not been addressed. By utilizing cantilever beam analogy, the current article proposes a modal analysis method to formulate RCMF demands. The proposed model and obtained analytical charts provide a manual method for rapid study and preliminary design of low- to mid-rise RCMFs with relatively uniform properties over the height. An extensive parametric study investigates the effects of rocking core base-fixity and frame-to-core stiffness on demand values. An independent computer analysis verifies the validity and accuracy of the proposed formulas. Findings show significant higher-mode effects in several RCMF combinations.  相似文献   
15.
Structural irregularity in new buildings is sometimes desired for aesthetic reasons. Often it is unavoidable due to different uses in adjacent spaces within the building. The seismic behaviour of irregular structures is harder to predict than that of regular buildings. More comprehensive analysis techniques are often required to achieve adequate accuracy. Designing irregular structures poses additional challenges as the structural characteristics are unknown. There is a lack of practical design methods that reliably produce economic and seismically robust design solutions for highly irregular RC structures. This paper presents an extension of the Effective Modal Design (EMD) method from asymmetric-plan RC wall buildings to vertically setback asymmetric-plan RC wall buildings. EMD is a generalization of the Direct Displacement-Based Design method for highly irregular ductile uncoupled RC wall structures. EMD reverse engineers a multi-degree of freedom Equivalent Linear System to produce the most economic design solution that achieves the target performance levels. The utility of EMD is verified for a wide range of setback asymmetric-plan reinforced concrete wall structures using nonlinear time history analysis of reasonably realistic 3D structural models. Advantages of EMD include explicit consideration of nonlinear, torsional and ‘higher mode’ effects. The method produces capacity-designed design actions for all reinforced concrete walls in the seismic structural system. EMD only requires three response spectrum type analyses. It does not require time history analysis or pushover analysis. EMD is a practical seismic design method for generally irregular RC wall buildings that uses analysis techniques that most engineering practitioners are familiar and confident with. It was found that for over 95% of the structures considered, EMD achieved critical mean peak responses between ??20 and +?15% of the target response values, with a median of ??5%. This significant improvement in design accuracy and reliability (compared to traditional force based design) was achieved at the relatively small additional computational effort of two Response Spectrum Analyses. This demonstrates the value that the proposed Effective Modal Design method adds to the current spectrum of seismic design methods for irregular ductile RC wall structures.  相似文献   
16.
17.
A simple model of fluid particle advection induced by the interaction of a point vortex and incident plane flow occurring near a curved boundary is analyzed. The use of the curved boundary in this case is aimed at mimicking the geometry of an isolated bay of a circular shape. An introduction of such a boundary to the model results in the appearance of retention zones, where the vortex can be permanently trapped being either stationary or periodically oscillating. When stationary, it induces a steady velocity field that in turn ensures regular advection of nearby fluid particles. When the vortex oscillates periodically, the induced velocity field turns unsteady leading to the manifestation of chaotic advection of fluid particles. We show that the size of the fluid region engaged into chaotic advection increases almost monotonically with the increased magnitude of the vortex oscillations provided the magnitude remains relatively small. The monotonicity is accounted for the fact that the frequency of the vortex oscillations incommensurable with the proper frequency of fluid particle rotations in the steady state. Another point of interest is that it is demonstrated that bounded regions, in which the vortex may be trapped, can appear even at a significant distance from the bay. Making use of a Lagrangian indicator, examples of fluid particle advection induced by the periodic motion of the vortex inside the bay are adduced.  相似文献   
18.
Theory of wave boundary layers (WBLs) developed by Reznik (J Mar Res 71: 253–288, 2013, J Fluid Mech 747: 605–634, 2014, J Fluid Mech 833: 512–537, 2017) is extended to a rotating stratified fluid. In this case, the WBLs arise in the field of near-inertial oscillations (NIOs) driven by a tangential wind stress of finite duration. Near-surface Ekman layer is specified in the most general form; tangential stresses are zero at the lower boundary of Ekman layer and viscosity is neglected below the boundary. After the wind ceases, the Ekman pumping at the boundary becomes a linear superposition of inertial oscillations with coefficients dependent on the horizontal coordinates. The solution under the Ekman layer is obtained in the form of expansions in the vertical wave modes. We separate from the solution a part representing NIO and demonstrate development of a WBL near the Ekman layer boundary. With increasing time t, the WBL width decays inversely proportional to \( \sqrt{t} \) and gradients of fields in the WBL grow proportionally to \( \sqrt{t} \); the most part of NIO is concentrated in the WBL. Structure of the WBL depends strongly on its horizontal scale L determined by scale of the wind stress. The shorter the NIO is, the thinner and sharper the WBL is; the short-wave NIO with L smaller than the baroclinic Rossby scale LR does not penetrate deep into the ocean. On the contrary, for L?≥?LR, the WBL has a smoother vertical structure; a significant long-wave NIO signal is able to reach the oceanic bottom. An asymptotic theory of the WBL in rotating stratified fluid is suggested.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号